Highly selective CO₂ capture by nitrogen enriched porous carbons

Hailin Cong b,1, Meirong Zhang a,b,1, Yanli Chen a, Kai Chen a, Yajuan Hao a, Yunfeng Zhao a,* Lai Feng a,*

a College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
b Lab for New Fiber Materials and Modern Textile-Growing Base for State Key Laboratory, College of Chemical and Environmental Engineering, Qingdao University, Qingdao 266071, China

ARTICLE INFO
Article history:
Received 11 February 2015
Accepted 20 April 2015
Available online 25 April 2015

ABSTRACT
A series of nitrogen enriched microporous carbons were facilely prepared by KOH activation using melamine-doped phenolic resins as precursors. The activated carbons show high CO₂ uptakes up to ca. 1.3 mmol g⁻¹ under low pressure (0.15 bar, 25 °C), which can be ascribed to not only their optimal fraction of ultramicropores but also the high N-contents. One of the samples even exhibits excellent adsorption selectivity for CO₂ over N₂ (i.e., selectivity factors of 43.7 and 52.9 obtained from initial slope and IAST calculations, respectively). Furthermore, the preferential CO₂ uptake of the carbons was confirmed by successive breakthrough experiments under post combustion flue gas stream conditions (15% CO₂ concentration, 1 bar and 25 °C). Since these carbons also feature good stability over repeated thermal cycling and ease of regeneration, their practical applications in post combustion CO₂ capture shall lie within the realm of possibility.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, global warming has been emerging as an international issue, which was attributed to the increasing emissions of greenhouse gas such as CO₂, CH₄ and so on [1]. Particularly, it has been generally believed that the energy-related CO₂ emissions contribute to the major component of greenhouse gas. To date, extensive efforts have been devoted to developing CO₂ capture and storage technologies [2–4], aiming to substantially reduce CO₂ emissions under the premise of ensuring the normal operation of power-plant. Over the last few years, the technologies of post-combustion CO₂ capture have been rapidly developed [5]. Various adsorbents were prepared and employed for this purpose [6]. Nevertheless, given the low content (i.e., ~15%) or low partial pressure of CO₂ in the flue gas streams [7,8], real application requires developing the adsorbents with high CO₂ adsorption capacity at low pressure and high selectivity of CO₂ over other gases such as N₂, the major component of the flue gas.

In recent years, a variety of porous solid sorbents such as metal-organic frameworks (MOFs) [9,10], covalent organic frameworks (COFs) [11–13], zeolites [14,15], metal oxides [16,17] and porous carbons [18–24] have been developed for CO₂ capture. Among them, MOF materials exhibited the highest CO₂ uptake up to 8.5 mmol g⁻¹ at ambient conditions (i.e., 25 °C and 1 bar) [25]. Nevertheless, most of MOF materials...
feature high-cost and low stability toward ambient moisture, which make them not suitable for practical use. In contrast, microporous carbons show several advantages such as superior thermal/chemical stabilities, low cost, tunable pore structures and easy regeneration as well, indicating their superior potential for post-combustion CO2 capture.

To improve the application of microporous carbons, continuous interests focus on the development of simple preparation routes to the carbons with high CO2 capture capacities. As suggested by literatures, one particular simple methodology is to activate the less porous carbons chemically or physically, resulting in highly microporous carbons that deliver high CO2 uptake in the range of 3–5 mmol g−1 at ambient conditions (i.e., 25 °C and 1 bar) [26–31]. For instance, carbonaceous phenolic resins showed limited CO2 uptake, whereas the CO2 or KOH activated carbons exhibited remarkably improved CO2 adsorption capacities [21,27].

On the other hand, some literatures also reported that microporous carbons with doped heteroatoms displayed enhanced CO2 uptake especially at low pressure as well as high CO2/N2 selectivity, though the contributions of the doped heteroatoms (i.e., N, S) are still under controversial [32–36]. To date, the best performing N-doped carbons exhibited CO2 uptake reaching 1.51 mmol g−1 at 0.15 bar and 25 °C and good CO2/N2 selectivity as well [34], indicative of their potential application for CO2 and N2 separation.

In this work, we report on a family of N-enriched microporous carbons prepared via one-step KOH activation of melamine-doped phenolic resins. Particularly, by adjusting the activation conditions as well as the melamine contents in the phenolic precursors, it is possible to obtain the carbons displaying high CO2 uptake of ca. 1.3 mmol g−1 at 0.15 bar, 25 °C and high CO2/N2 selectivity up to 52.9 and 43.7 (calculated by IAST or initial slope method, respectively). The study also provides further experimental evidence on the importance of not only the ultramicropores but also the N-species for preferential CO2 uptake at low pressure. Moreover, to evaluate the potential of utilizing these N-enriched microporous carbons for post combustion CO2 capture, their CO2 uptake capacity under kinetic flue gas condition and the regeneration capability are properly assessed.

2. Experimental

2.1. Preparation of N-enriched microporous carbons

The melamine-doped phenolic-resins were prepared using a recipe reported by Zhou et al. [37]. Briefly, 1.125 g of resorcinol and 1.658 g of formaldehyde water solution (37 wt%) were dissolved in 19.5 mL of distilled water and then stirred for more than 1 h. Meanwhile, 1.288 g of melamine and 2.488 g of formaldehyde water solution were dissolved in 60 mL of distilled water at 80 °C. The solution was stirred vigorously until the solution became clear and slowly cooling down to 40 °C. Subsequently, the two solutions were mixed and stirred for 30 min. in which the molar ratio of melamine to resorcinol is 1:1. Then, the mixed solution was transferred in a Teflon-lined steel autoclave and treated at 120 °C for 24 h. After polymerization, the obtained yellowish resins (MR-1) were freeze-dried in vacuum overnight. By increasing the ratio of melamine and resorcinol to 1.5 and 3, respectively, we also prepared the resins MR-1.5 and MR-3.

The post-synthesis activations of these MR resins were performed by placing a molybdenum boat with a mixture of 1 g as-prepared MR resins and 0.25 g KOH in a tube furnace under flowing nitrogen with a heating rate of 3 °C min−1 up to 500–700 °C. The mixture was kept at the target temperature for 40 min and the resulting samples were washed with 1 M HCl, then deionized water to remove potassium salts, and dried. The obtained carbonaceous materials were labeled as MR-x-y, where x refers to the ratio of melamine to resorcinol (i.e., 1, 1.5 or 3) and y refers to the activation temperature in °C (i.e., 500, 600 or 700).

2.2. Characterization

Scanning electron microscopy (SEM) images were obtained with a Hitachi SU8010 instrument. Transmission electron microscopy (TEM) was conducted on a FEI TecnaiG220 instrument at 200 kV accelerating voltage. The Fourier transform infrared (FT-IR) spectra were obtained on a TENSOR27 spectrometer (Bruker, Germany) with sample prepared as KBr pellets. X-ray photoelectron spectroscopy (XPS) studies were carried out with an ESCALAB 250 spectrometer using a monochromated Al Kα excitation source. Nitrogen adsorption–desorption isotherms at −196 °C and CO2 adsorption isotherms at 0 and 25 °C were all measured on an adsorption volumetric analyzer ASAP 2020 manufactured by Micromeritics, Inc. (Norcross, Georgia, USA). All samples were degassed at 200 °C overnight prior to adsorption measurements. A part of the N2 sorption isotherm in the p/p0 range of 0.005–0.05 was fitted to the BET equation to estimate the BET surface area (see Fig. S1) [38,39]. Total pore volume (PVt) was obtained at a relative pressure of 0.985. The pore size distribution (PSD) was obtained from the DFT model in the Micromeritics ASAP 2020 software package (assuming slit pore geometry) based on the CO2 adsorption at 0 °C. The micropore surface areas were determined using the nonlocal density theory (NLDFT) method.

The breakthrough separation experiments were conducted on a homemade apparatus as previously described [32]. In a typical experiment, 550 mg of porous carbon sorbent (MR-1.5-500) was thoroughly grounded and packed into a quartz column (5.8 mm I.D. × 150 mm) with silica wool filling the void space. The sorbent in the column was activated with a helium flow (10 mL min−1) at 200 °C for 1 h and then the column was cooled down to 25 °C. The flow of He was then turned off while a gas mixture of N2/CO2 (85:15, v/v) at 5.0 mL min−1 was sent into the column. The effluent from the column was monitored using a mass spectrometer (Pfeiffer vacuum; OmnisStar, GSD 320). Other details for calculating the adsorption capacity and CO2/N2 selectivity are also previously described [32]. The CO2 saturated sample was regenerated in situ by purging the column with a helium flow (10 mL min−1) at 80 °C for 0.5 h and then cooled down to 25 °C for the next breakthrough cycle.
3. Results and discussion

3.1. Structural properties of the activated carbons

In the previous studies, a variety of phenolic resins were synthesized and further subject to activations for preparing microporous carbons [21,40–42]. Nevertheless, previously reported carbons derived from N-enriched phenolic resins showed lower CO₂ uptakes than expected [35,40–42], though it has been proposed that the presence of nitrogen groups on the carbon surface can promote CO₂ capture capacity. Herein, we use melamine-doped phenolic-resins as precursors for preparing N-enriched microporous carbons. After polymerization, the resulting MR-ₙ (ₙ = 1, 1.5, 3) resins were directly subjected to KOH activations under nitrogen without having to be pre-carbonized. Noteworthy is that in this study the carbonization and activation were carried out in a combined (one step) procedure, while the two processes were usually separated in most of reported porous carbon preparations due to the instability of as-prepared polymers under highly basic condition [32,33]. Thus, this one-step method would render these porous carbons the advantage of simple preparation, which makes them competitive adsorbents for practical application in flue gas treatment.

The morphologies of the activated carbons were studied with scanning electron microscopy (SEM). As can be seen in Figs. 1a and S2, the as-prepared MR precursors show particle morphology, while the activated carbons feature mainly large monoliths, suggesting the significant morphological change of the polymeric carbons during the activation process. To further understand the micro-structures of the activated carbons, transmission electron microscopy (TEM) measurements were carried out. As shown in Figs. 1c and S3, the disordered slit-like micropores can be clearly seen in the typically activated samples MR-ₙ-500, suggesting their microporous structures.

On the other hand, elemental mappings by means of SEM (Fig. 1b) demonstrated that the doped nitrogen species are uniformly distributed in the activated carbons. The nature of the doped nitrogen species was further investigated by means of X-ray photoelectron spectroscopy (XPS). As shown in Figs. 2 and S4, the carbons obtained under different activation conditions exhibit similar XPS spectra, in which the N1s signal can be fitted by three peaks with binding energies centered at 398.4 eV, 400.0 eV and 401.3 eV, representing pyridinic N, pyrrolic N and graphitic N, respectively. It is noteworthy that among these N-contents the pyrrolic N is generally more abundant than others, which is beneficial for the CO₂ capture [23]. Moreover, as determined by XPS, the N-contents of MR-₁⁻⁻┅┅┅・・・・・
low relative pressure and can be assigned to type I, indicating the presence of large fraction of micropores in these activated carbons. Moreover, all isotherms also display small hysteresis loops at moderate to high relative pressure, suggesting the presence of a small fraction of mesopores for all these samples. Cumulative pore volume curves obtained from low temperature \(\text{N}_2 \) adsorption using density functional theory (DFT) method for slit-type pore geometry are presented in Fig. S6. These data suggest that for most activated carbons (except for MR-3-600) their cumulative pore volumes are mainly derived from the pores smaller than 1.5 nm, indicating a large potential for \(\text{CO}_2 \) adsorption.

3.3. \(\text{CO}_2 \) adsorption capacity

The \(\text{CO}_2 \) adsorption capacities of these N-doped activated carbons were investigated at 0 and 25 °C under atmospheric pressure (1 bar). All the measured \(\text{CO}_2 \) adsorption isotherms are presented in Figs. 4, S7, and the related data are listed in Table 1. It is interesting to note that the sample MR-1-500 shows higher \(\text{CO}_2 \) uptake at 1 bar (25 or 0 °C) or low pressure (0.15 bar, 25 °C) with respect to other samples, despite of its moderate BET surface area of 1286 m\(^2\)/g. To the best of our knowledge, the \(\text{CO}_2 \) uptake of 1.31 mmol g\(^{-1}\) at low pressure (0.15 bar) and 25 °C is even comparable to the highest ever reported for various phenolic-resin-derived carbons [20,26].

Moreover, the uptakes of MR-1.5-500 and MR-3-500 are determined to be 1.29 mmol g\(^{-1}\) at low pressure (0.15 bar) and 25 °C, though their surface areas are much lower than those of other samples. These results clearly show that the \(\text{CO}_2 \) adsorption capacities of the activated carbons are not closely related to their surface areas.

To further investigate how the structural properties of micropores influence the \(\text{CO}_2 \) adsorption capacities of these activated carbons, the cumulative pore volume curves derived from fine micropores with size smaller than 1.1 nm as well as their pore size distributions were calculated using DFT method and assuming slit-type pore geometry (see Figs. S8 and S9). The resulting data (Table S1 and Fig. S10) likely suggest that the micropores with size below 0.7 nm are more important than the larger micropores in determining the \(\text{CO}_2 \) uptakes of these activated carbons under ambient conditions (i.e., 1 bar and 25 °C). Typically, among the MR-x-500 series, MR-1-500 has the highest ultramicropore volume (i.e., \(\text{PV}_{0.7\text{nm}} \)), followed by MR-1.5-500 and MR-3-500. The \(\text{CO}_2 \) uptake of MR-1-500 (i.e., 4.04 mmol g\(^{-1}\) at 1 bar and 25 °C) is consistently higher than those of MR-1.5-500 and MR-3-500 (i.e., 3.77 and 3.51 mmol g\(^{-1}\) at 1 bar and 25 °C) by 7% and 15%, respectively. These results agree well with the previous reports, which demonstrated a good correlation between the
volume of the micropores smaller than 1 or 0.8 nm and the CO$_2$ uptake under ambient conditions [29,43]. However, MR-x-500 series showed similar CO$_2$ uptakes at low pressure (i.e., 0.15 bar) and 25 °C (i.e., 1.29–1.31 mmol g$^{-1}$), though their ultramicropore volumes are quite different. We ascribe these similar uptakes to the fact that the samples MR-1.5-500 and MR-1.5-600, despite having lower ultramicropore volumes, possess much higher N-contents, while the sample MR-1-500 has lower N-content but higher ultramicropore volume. This observation demonstrates the importance of N-content in determining the low pressure CO$_2$ uptake at 25 °C. Therefore, it is rational to propose a combined influence of ultramicropores and N-species on low pressure (0.15 bar) CO$_2$ uptake, while at ambient pressure (1 bar), ultramicropores play a more crucial role.

In addition, based on the data discussed above, the optimized activation temperature is determined as 500 °C. The samples activated at this temperature possess higher ultramicropore volume and, thus, show higher CO$_2$ uptakes relative to others. Increasing the activation temperature causes reduced ultramicropore volume and lower CO$_2$ uptake. On the other hand, varying the M/R ratio in precursor gave rise to more complex results. Particularly, increasing the M/R ratio from 1 to 1.5 and 3 results in the carbons having higher N-contents, larger BET surface area but lower ultramicropore volume (see Table 1). It is thus possible to vary the structural

Table 1 – Physical characteristics of N-doped microporous carbons.

<table>
<thead>
<tr>
<th>Sample</th>
<th>N$_2$ adsorption at −196 °C</th>
<th>CO$_2$ adsorption at 0 °C</th>
<th>CO$_2$ uptake (mmol g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_{BET} (m2 g$^{-1}$)</td>
<td>P_{V_t} (cm3 g$^{-1}$)</td>
<td>$P_{V_{1.5nm}}$ (cm3 g$^{-1}$)</td>
</tr>
<tr>
<td>MR-1-500</td>
<td>1286</td>
<td>0.542</td>
<td>0.442</td>
</tr>
<tr>
<td>MR-1-600</td>
<td>1428</td>
<td>0.589</td>
<td>0.451</td>
</tr>
<tr>
<td>MR-1-700</td>
<td>1531</td>
<td>0.643</td>
<td>0.531</td>
</tr>
<tr>
<td>MR-1.5-500</td>
<td>1159</td>
<td>0.494</td>
<td>0.382</td>
</tr>
<tr>
<td>MR-1.5-600</td>
<td>1579</td>
<td>0.688</td>
<td>0.539</td>
</tr>
<tr>
<td>MR-3-500</td>
<td>1196</td>
<td>0.498</td>
<td>0.394</td>
</tr>
<tr>
<td>MR-3-600</td>
<td>1620</td>
<td>0.836</td>
<td>0.473</td>
</tr>
</tbody>
</table>

S_{BET}: specific surface area calculated by the Brunauer–Emmett–Teller (BET) method ($p/p_0 = 0.005–0.05$). P_{V_t}: total pore volume at $p/p_0 = 0.985$. $P_{V_{1.5nm}}$: cumulative pore volume calculated in the range of pore widths up to 1.5 nm; S_{nm} and $P_{V_{0.7nm}}$: the surface area and volume of narrow micropores (<0.7 nm) calculated with the DFT model, respectively.

MR-3-500, despite having lower ultramicropore volumes, possess much higher N-contents, while the sample MR-1-500 has lower N-content but higher ultramicropore volume. This observation demonstrates the importance of N-content in determining the low pressure CO$_2$ uptake at 25 °C. Therefore, it is rational to propose a combined influence of ultramicropores and N-species on low pressure (0.15 bar) CO$_2$ uptake, while at ambient pressure (1 bar), ultramicropores play a more crucial role.

In addition, based on the data discussed above, the optimized activation temperature is determined as 500 °C. The samples activated at this temperature possess higher ultramicropore volume and, thus, show higher CO$_2$ uptakes relative to others. Increasing the activation temperature causes reduced ultramicropore volume and lower CO$_2$ uptake. On the other hand, varying the M/R ratio in precursor gave rise to more complex results. Particularly, increasing the M/R ratio from 1 to 1.5 and 3 results in the carbons having higher N-content, larger BET surface area but lower ultramicropore volume (see Table 1). It is thus possible to vary the structural
properties and CO₂ uptake capacities of the activated carbons by simply choice of the activation temperature and the M/R ratio in precursor.

To better understand the CO₂ adsorption capacities of these N-doped activated carbons, their isosteric heats of adsorption (\(Q_{\text{st}}\)) were calculated using adsorption isotherms obtained at 0 and 25 °C, respectively. As shown in Fig. 5, the calculated \(Q_{\text{st}}\) values of MR-x-500 series in the ranges of 36.1–28.2 (\(x = 1\)), 38.8–29.9 (\(x = 1.5\)) and 36.9–26.5 (\(x = 3\)) kJ mol⁻¹, respectively. These values are much higher than those obtained from the non-doped microporous carbons with comparable CO₂ uptakes at low pressure (i.e., 27.7–20.3 kJ mol⁻¹) [26], suggesting the strong interaction between CO₂ and the surface of these N-doped microporous carbons.

3.4. Selectivity for CO₂ adsorption

As typical flue gas stream contains only ~15% CO₂ with the rest being mainly N₂ and a small amount of water vapor [6], the post-combustion CO₂ capture technology requires the sorbents with high CO₂/N₂ selectivity. To estimate the CO₂/N₂ selectivities for these N-enriched microporous carbons, the N₂ adsorption isotherms at 0 and 25 °C were also measured for comparison with the CO₂ isotherms. As shown in Fig. S12, the samples MR-x-500 (\(x = 1, 1.5, 3\)) show very limited N₂ uptakes which are much lower than their CO₂ uptakes at the same temperature, indicative of high CO₂/N₂ selectivities. Furthermore, initial slope calculations based on CO₂ and N₂ adsorption isotherms [44] were performed to determine the CO₂/N₂ selectivities of the carbons (see Table 2). Particularly, MR-x-500 (\(x = 1, 1.5, 3\)) series give the selectivity factors of 27.5, 43.7 and 37.2, respectively. The factor of 43.7 is even comparable to the highest CO₂/N₂ selectivity ever reported (i.e., a selectivity factor of 43 calculated using the same method) [31].

The ideal adsorbed solution theory (IAST) model [45,46] was also used to estimate the selectivity of CO₂ over N₂ for all the samples. The calculated results are shown in Figs. 6, S14 and listed in Table 2, which are all consistent with the factors obtained using initial slope method. Specifically, superior IAST selectivity factors of 28.4, 52.9 and 48.7 were obtained for MR-1-500, MR-1.5-500 and MR-3-500, respectively, at the total pressure of 1 bar and 15% CO₂ concentration. The IAST selectivity of MR-1.5-500 is also among the highest reported for known carbon materials under similar condition [31,32], indicating an excellent CO₂ capture capacity from a flue gas stream. According to the results discussed above, we propose that very high CO₂/N₂ selectivity of MR-1.5-500 is due to not only its optimal PV\(0.7\)nm but also the high N-content.

Moreover, to evaluate the potential of these carbons for post-combustion applications, breakthrough experiments were carried out to estimate the CO₂ capture capacity from a CO₂/N₂ mixture (15:85, v/v) under kinetic flow conditions. As shown in Fig. 7, when the flue gas passed through a sorbents-filled column, N₂ was detected at an earlier stage, while CO₂ was detected with a delayed time of 463 s. The CO₂ adsorption capacity and CO₂/N₂ selectivity for MR-1.5-500 were calculated to be 2.1 wt% and 45, respectively, consistent with the IS or IAST selectivity derived from the single gas adsorption isotherms. To test the regeneration capability of

Table 2 – CO₂/N₂ selectivity factors calculated using initial slope method (IS) and IAST model, respectively.

<table>
<thead>
<tr>
<th>Sample</th>
<th>MR-1-500</th>
<th>MR-1-600</th>
<th>MR-1-700</th>
<th>MR-1.5-500</th>
<th>MR-1.5-600</th>
<th>MR-3-500</th>
<th>MR-3-600</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>27.5</td>
<td>30.5</td>
<td>23.4</td>
<td>43.7</td>
<td>24.7</td>
<td>37.2</td>
<td>17</td>
</tr>
<tr>
<td>IAST</td>
<td>28.4</td>
<td>31.2</td>
<td>22.6</td>
<td>52.9</td>
<td>23.0</td>
<td>48.7</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Fig. 6 – The IAST-predicted selectivity for MR-x-500 series with the overall pressure of 1 bar at 25 °C. (A color version of this figure can be viewed online.)

Fig. 7 – Column breakthrough curves for a CO₂–N₂ (15:85, v/v) in 5 mL min⁻¹ mixed gas at 25 °C and 1 bar over MR-1.5-500. (A color version of this figure can be viewed online.)
these carbons, we also performed successive breakthrough experiments on the representative sample of MR-1.5-500, which showed almost constant CO₂ adsorption capacities and good CO₂/N₂ selectivities over ten cycles (see Fig. S15), indicating that these materials can be repeatedly regenerated under mild conditions.

4. Conclusions

In summary, we have prepared a series of nitrogen enriched microporous carbons by one-step KOH activation under mild conditions using melamine-doped phenolic resins as precursors. Three of the prepared samples (i.e., MR-x-500) show high CO₂ uptakes of ca. 1.3 mmol g⁻¹ under low pressure (0.15 bar and 25 °C), which can be ascribed to not only their optimal fraction of ultramicropores but also the high N-contents. One of the samples (i.e., MR-1.5-500) even shows excellent adsorption selectivity for CO₂ over N₂ (i.e., selectivity factors of 43.7 and 52.9 given by the initial slope and IAST calculations, respectively). Furthermore, this preferential CO₂ capture was confirmed by a breakthrough experiment under post combustion flue gas stream conditions. The successive experiments additionally suggest that the carbons can be facilely regenerated and show good stability over several adsorption-desorption cycles. Thus, considering the combined characteristics of these carbons, including simple preparation, high CO₂ uptake at low pressure, excellent CO₂/N₂ selectivity, ease of regeneration and nice cyclability, they might be suitable sorbents for post-combustion CO₂ capture.

Acknowledgements

This work is the supported in part by the NSFC (51372158), NTP (20133201120004), Jiangsu Specially Appointed Professor Program (SR10800113), the Project for Jiangsu Scientific and Technological Innovation Team (2013).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.carbon.2015.04.052.

References

